Whychus Creek Preliminary UAS Velocimetry Analysis

Brandon Overstreet

USGS Oregon Water Science Center

July 8th, 2021

Particle Image Velocimetry

Time 1

Time 2

Tools

Science for a changing world

https://riverdischarge.blogspot.com/

https://pivlab.blogspot.com/

https://github.com/frank-engelusgs/Video-Stabilizer

Workflow

Create a channel mask

Compute mean image

Subtract Mean Intensity Image

Interrogation Area

Calibration (CTRL+Z)

File Image acquisition Image settings Analysis Calibration Post-processing Plot Extractions Statistics Synthetic particle image generation Help / Referencing

Load calibration image (optional)					THE R. LEWIS CO., LANSING MICH.
Setup Scaling		and the second second			
Select reference distance	The All Property of the Annual Property of the	State of The Association of the State			
Real distance [mm] 1000 time step [ms] 33.3667		and plant	231 P		100000
x increases towards y increases towards b v			x2027.8 y.568.3		
Set x offset Set y offset		1000			Ale and a state
1 px = 0.00899 m 1 px/frame = 0.26929 m/s x offset: 0 m v offset: 0 m		S. Free S		Litz .	
Apply calibration	ALL PROPERTY.	DAGRESUNS	s= 111.29 gr	Oby Bas	
Clear calibration	No. 2 miles	ALL AND A		1 1	
x	The diff		Xe	1. S. 1. S.	
Main tasks quick access Tools Current point: N/A N/A N/A N/A Frame (298/298): A:s W57 00299.jpq Toggle			x.1977.3 y.787.5		
N	行うにしている		the second of		and the

Preliminary results, do not reproduce

0.1

Velocity magnitude [m/s]

0.9

0.5

0.4

0.3

0.2

Phase 2B (W77) Measured surface velocity = 1.16 m/s Mean LSPIV Vel. = 0.32 m/s

Max LSPIV Vel. = 0.66 m/s StdDev Velocity = 0.06 m/s

Whychus Canyon (W57) Measured surface velocity = 0.89 m/s Mean LSPIV velocity = 0.45 m/s Max LSPIV Vel = 1.07 m/s StdDev Velocity = 0.16 m/s

Preliminary results, do not reproduce

Considerations and next steps

- Requires visible texture on the water surface. Many pool areas do not have adequate tracers
- Camera orientation is key to highlight texture while minimizing sun glint saturation
- Pools may require seeding
- 30 second videos at 30 fps provided more than enough data for LSPIV analysis. Lower frame rates seems to produce similar results.
- Current analysis uses ground scaling. Could use UAS height (AGL) to calculate GSD
- Aircraft position and attitude could allow georeferencing velocity outputs which would facilitate surface velocity mapping

References

- Thielicke, W., Sonntag, R. (2021) Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVIab. Journal of Open Research Software, 9: 12. DOI: <u>https://doi.org/10.5334/jors.334</u>
- Thielicke, W. and Stamhuis, E.J. (2014): PIVIab Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. Journal of Open Research Software 2(1):e30, DOI: <u>http://dx.doi.org/10.5334/jors.bl</u>
- Patalano, A., García, C. M., & Rodríguez, A. (2017). Rectification of Image Velocity Results (RIVeR): A simple and user-friendly toolbox for large scale water surface Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV). *Computers & Geosciences*, 109, 323-330.
- Legleiter, C. J., & Kinzel, P. J. (2020). Inferring surface flow velocities in sediment-Laden Alaskan rivers from optical image sequences acquired from a helicopter. *Remote Sensing*, 12(8), 1282.

Next steps

 Matheson, Adrian, Martin Thoms, and Michael Reid. "Does Reintroducing Large Wood Influence the Hydraulic Landscape of a Lowland River System?" Geomorphology 292 (September 1, 2017): 128–41. https://doi.org/10.1016/j.geomorph.2017.03.035.

File Image acquisition Image settings Analysis Calibration Post-processing Plot Extractions Statistics Synthetic particle image generation Help / Referencing

PIVIab 2.50 [Path: E:\users\boverstreet\Projects\Whychus_UAS\2021_LSPIV\Analysis\DataIn\Videos\W57\stab]

File Image acquisition Image settings Analysis Calibration Post-processing Plot Extractions Statistics Synthetic particle image generation Help / Referencing

